Year 13 Mathematics EAS 35

Robert Lakeland & Carl Nugent

Contents

Complex Numbers 3.5

This achievement standard involves applying the algebra of complex numbers in solving problems.

- This achievement standard is derived from Level 8 of The New Zealand Curriculum and is related to the achievement objectives:
	- ❖ manipulate complex numbers and present them graphically
	- ❖ form and use polynomial, and other non-linear equations

 in the Mathematics strand of the Mathematics and Statistics Learning Area.

- Apply the algebra of complex numbers in solving problems involves:
	- ❖ selecting and using methods
	- ❖ demonstrating knowledge of concepts and terms
	- ❖ communicating using appropriate representations.
- Relational thinking involves one or more of:
	- ❖ selecting and carrying out a logical sequence of steps
	- ❖ connecting different concepts or representations
	- ❖ demonstrating understanding of concepts
	- ❖ forming and using a model;

 and relating findings to a context, or communicating thinking using appropriate mathematical statements.

- Extended abstract thinking involves one or more of:
	- ❖ devising a strategy to investigate or solve a problem
	- ❖ identifying relevant concepts in context
	- ❖ developing a chain of logical reasoning, or proof
	- ❖ forming a generalisation;

 and also using correct mathematical statements, or communicating mathematical insight.

- Problems are situations that provide opportunities to apply knowledge or understanding of mathematical concepts and methods. Situations will be set in real-life or mathematical contexts.
- Methods include a selection from those related to:
	- ❖ quadratic and cubic equations with complex roots
	- ❖ Argand diagrams
	- ❖ polar and rectangular forms
	- ❖ manipulation of surds
	- ❖ manipulation of complex numbers
	- ❖ loci
	- ❖ De Moivre's theorem
	- \diamondsuit equations of the form $z^n = r \text{ cis } \theta$, or $z^n = a + bi$ where a and b are real and n is a positive integer.

Solving Quadratic Equations by Completing the Square

Completing the Square

Not all quadratics factorise. Therefore we need a technique that will enable us to solve quadratics that do not factorise. The first technique we look at is called **completing the square.**

Consider the pattern

$$
(x \pm a)^2 = x^2 \pm 2ax + a^2
$$

This expression is called a perfect square and is the basis of completing the square.

The method requires us to rewrite the quadratic as a perfect square adjusting the constant term to match the given quadratic.

We then take the square root of both sides of the expression and make x the subject to obtain the solution(s).

Example

Use completing the square to solve the quadratic equation

 $x^2 - 6x + 2 = 0$

Put the constant on the right-hand side

$$
x^2 - 6x = -2
$$

Complete the square with $a = -3$ (half the -6).

$$
x^{2}-6x + (-3)^{2} = -2 + (-3)^{2}
$$

$$
x^{2}-6x + 9 = -2 + 9
$$

$$
(x-3)^{2} = -2 + 9
$$

$$
(x-3)^{2} = 7
$$

Solve

$$
x-3 = \pm \sqrt{7}
$$

$$
x = 3 \pm \sqrt{7}
$$

$$
x = 3 + \sqrt{7} \text{ and } x = 3 - \sqrt{7}
$$

Solving a quadratic by completing the square is the easiest method when you are expected to express the answer in surd form.

The square of half the coefficient of the x term will complete a perfect square.

To find the constant when completing the square, square the 'a' of $(x \pm a)^2$ and **add or subtract the required amount.**

Use completing the square to solve the quadratic equation e to solve the quadratic

Use completing the square to solve the quadratic
 $2x^2 + 4x - 8 = 0$ Example

Use completing the square to solve the quadratic

equation
 $2x^2 + 4x - 8 = 0$

 $2x^2 + 4x - 8 = 0$

Put the constant on the right-hand side

$$
2x^2 + 4x = 8
$$

Common factor 2

$$
2(x^2+2x)=8
$$

Divide both sides by 2 $x^2 + 2x = 4$ Complete the square with $a = 1$ (half of 2)

$$
x^{2} + 2x + (1)^{2} = 4 + (1)^{2}
$$

$$
(x + 1)^{2} = 4 + 1
$$

$$
(x + 1)^{2} = 5
$$

Solve

$$
x + 1 = \pm \sqrt{5}
$$

$$
x = -1 \pm \sqrt{5}
$$

$$
x = -1 + \sqrt{5} \text{ and } x = -1 - \sqrt{5}
$$

The Remainder and Factor Theorems

Remainder Theorem

Consider the polynomial defined by

 $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$

The degree of a polynomial is the highest power of x in the expression, in this case 'n', and its constant term is a_0 .

If we have a polynomial $p(x)$ and divide it by $(x - a)$ to give a quotient $Q(x)$ and remainder R, then we can write

$$
p(x) = (x - a).Q(x) + R
$$

If $p(x)$ is divided by $(x - a)$ and a remainder is obtained, then that remainder R is p(a), i.e. $p(a) = R$.

Factor Theorem

A factor is a divisor that gives a remainder of zero. We can use the Factor Theorem which is just a corollary to the Remainder Theorem to factorise more complicated polynomials.

If $(x - a)$ is a factor of a polynomial $p(x)$, then $p(a) = 0$. (i.e. the remainder will be 0).

Also if $p(a) = 0$ then $(x - a)$ is a factor of $p(x)$.

Example

Find the remainder when $p(x) = x^2 - 4x + 5$ is divided by $(x - 1)$.

Given $p(x) = x^2 - 4x + 5$

Remainder = $p(1)$

$$
p(1) = 1^2 - 4(1) + 5
$$

$$
p(1) = 2
$$

So when $p(x)$ is divided by $(x - 1)$ the remainder is 2.

Find the remainder when $p(x) = 2x^2 + 6x - 3$ is divided by $(2x - 1)$.

$$
\overbrace{\text{max}}^{\text{right}}
$$

┑

Given $p(x) = 2x^2 + 6x - 3$

Remainder =
$$
p\left(\frac{1}{2}\right)
$$

\n
$$
p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^2 + 6\left(\frac{1}{2}\right) - 3
$$
\n
$$
p\left(\frac{1}{2}\right) = \frac{1}{2}
$$

So when $p(x)$ is divided by $(2x - 1)$ the remainder is $\frac{1}{2}$ 2 .

- **126.** For the polynomial $p(x) = 6x^3 13x^2 + 4$
	- a) Find the remainder when $p(x)$ is divided by $(x + 3)$.
	- b) Show that $(x 2)$ is a factor of $p(x)$.
	- c) Find the three solutions of the equation $p(x) = 0.$
- **127.** For $p(x) = x^3 x^2 7x 2$ find
	- a) the remainder when $p(x)$ is divided by $(x + 1)$.
	- b) the only rational factor.

- **128.** Consider the polynomial $p(x) = x^3 + 4x^2 + 8x + 5$
	- a) Show that $(x + 1)$ is a factor of $p(x)$.
	- b) Write $p(x)$ in the form $(x + 1)$ $(ax^2 + bx + c)$.

130. Consider $p(x) = x^3 + ax^2 + bx - 12$.

 $p(x)$, factorise $p(x)$ completely.

- **129.** A polynomial $p(x) = 2x^3 x^2 13x k$
	- a) Find the remainder when $p(x)$ is divided by $(x - 3)$.
	- b) Find the value of k if $p(x)$ is divisible by $(x + 2)$.
	- c) Using the value of k obtained in b) above factorise the polynomial $p(x)$ completely.

Given that $(x + 3)$ and $(x - 4)$ are factors of **131.** The polynomial $p(x) = 2x^3 - ax^2 + bx + 48$ has $(x - 4)$ as a repeated factor, find the values of a and b.

243. If
$$
z = 3 \text{ cis } \frac{-\pi}{2}
$$
 and $w = 2 \text{ cis } \frac{3\pi}{4}$.

- a) plot z and w on the first of the Argand diagrams.
	- b) find zw in polar form.
- c) find $\frac{w^2}{2}$ z in polar form.
	- d) plot your answers to b) and c) above on the second Argand diagram.
- **244.** Two impedances $z_1 = 4 + 3i$ and $z_2 = 3 4i$ are connected in parallel in an electrical circuit. The combined effect of impedances connected in parallel is given by 3i and $z_z = 3 - 4i$
in an electrical
fect of impedances
given by
mbined in the form a + bi.
lar form.
0.145 volts use
e current I in polar
with there are three

$$
\frac{1}{z_{\text{combined}}} = \frac{1}{z_z} + \frac{1}{z_2}
$$

- a) Find $\frac{1}{z_{\text{combined}}}$ and z_{combined} in the form $a + bi$.
	- b) Convert z_{combined} to polar form.
	- c) Given that $V = 130$ cis 0.145 volts use

$$
I = \frac{V}{z_{\text{combined}}}
$$
 to find the current I in polar form.

- **245.** In a simple electrical circuit there are three basic things to consider
	- flow of electric current (I).
	- resistance to that flow, called impedance (Z).

• electromotive force, called voltage (V). All three are related by the formula $V = I \times Z$ which can be expressed in several ways

i.e. V = I x Z or
$$
\frac{V}{Z}
$$
 = I or $\frac{V}{I}$ = Z

- a) Compute the voltage, V (in polar form) when $I = 5$ cis 0.6435 and $Z = 32.35$ cis 1.052.
- b) Compute the impedance, Z (in polar form) when $V = 111.8$ cis 2.034 and $I = 6.325$ cis -2.820 .

246. If
$$
z = \frac{-1 + \sqrt{3}i}{2}
$$

- a) convert z to polar form.
- b) find z^3 in polar form and then show $z^3 - 1 = 0.$
- **247.** If two impedances $z_1 = 2 + 15i$ and $z_2 = 7 2i$ are connected in series to a supply voltage V
of 240 volts and the current I (in amperes) of 240 volts and the current I (in amperes)

is given $I = \frac{V}{Z}$ where $Z = z_1 + z_2$ find I in polar form.

-*i* -2*i* -3*i i* 2*i* 3*i* 4*i* -4*i* Im -4 -3 -2 -1 0 1 2 3 4 Re ⁻⁴ -3 -2 -1 0
-*i*⁻*i*</sub> -*i* -2*i* -3*i i* 2*i* 3*i* 4*i* -4*i* Im -4 -3 -2 -1 0 1 2 3 4 Re

For $|z - 1| = |z - 3|$ describe the locus of z in the complex plane and obtain a Cartesian equation for the locus.

 $|z - 1| = |z - 3|$ Substituting $z = x + yi$ we write $|(x + yi) - 1| = |(x + yi) - 3|$ $|(x-1) + yi| = |(x-3) + yi|$ $\sqrt{(x-1)^2 + y^2} = \sqrt{(x-3)^2 + y^2}$ $(x-1)^2 + y^2 = (x-3)^2 + y^2$ $x^{2}-2x+1+y^{2}=x^{2}-6x+9+y^{2}$ – $2x + 1 = -6x + 9$ $4x = 8$ $x = 2$ z-31
 $|(x + yi) - 3|$
 $|(x-3) + yi|$
 $(x-3)^2 + y^2$
 $x + 3)^2 + y^2$
 $(x-6x + 9 + y^2)$
 $5x + 9$

through 2.

The locus of z is a vertical line through 2.

Example

For $|z| + |z - 2| = 6$ describe the locus of z geometrically and obtain a Cartesian equation for the locus.

$$
|z| + |z - 2| = 6
$$

Substituting $z = x + yi$ we write $|(x + yi)| + |(x + yi) - 2| = 6$ $|(x + yi)| + |(x - 2) + yi| = 6$ $\sqrt{x^2 + y^2} + \sqrt{(x-2)^2 + y^2} = 6$ $(x - 2)^2 + y^2 = (6 - \sqrt{x^2 + y^2})^2$ $x^{2} - 4x + 4 + y^{2} = 36 - 12\sqrt{x^{2} + y^{2}} + x^{2} + y^{2}$ $-4x - 32 = -12\sqrt{x^2 + y^2}$ $(-4x - 32)^2 = 144(x^2 + y^2)$ $16x^2 + 256x + 1024 = 144x^2 + 144y^2$ $128x^2 - 256x + 144y^2 = 1024$ $128(x^2 - 2x) + 144y^2 = 1024$ $128(x - 1)^2 + 144y^2 = 1152$ $(x-1)^2$ $\frac{(-1)^2}{9} + \frac{y^2}{8} = 1$

The locus of z is an ellipse centre (1, 0) with major axis 6 and minor axis $2\sqrt{8}$.

76

Page 12 cont... 65. $2(k+2)^2 - 1 = 0$ $k = -2 \pm \sqrt{\frac{1}{2}}$ or $-2 \pm \frac{1}{L}$ 2 66. $x = -1 \pm \sqrt{1 + \frac{k}{2}}$ 2 **67.** $x = 2 \pm \sqrt{4 - \frac{k}{2}}$ 68. $x = -1 \pm \sqrt{1 + \frac{6}{1}}$ k **69.** $x = \frac{-1 \pm \sqrt{7}}{15}$ k **Page 14 70.** $x = -0.146, -6.854$ **71.** x = 1.854, – 4.854 **72.** $x = 5, -6$ 73. $x = -1, 2.5$ **Page 15 74.** x = 1.143, 0.180 **75.** x = 3.886, – 0.886 **76.** $x = -3 \pm \sqrt{10}$ **77.** $x = 3 \pm \sqrt{6}$ **78.** $x = \frac{-5 \pm \sqrt{29}}{2}$ 2 **79.** $x = 2 \pm \sqrt{14}$ **80.** $x = -4 \pm \sqrt{16 + k}$ **81.** x = $-2 \pm \sqrt{13}$ k **82.** $x = \frac{(k+2) \pm k}{2}$ or $k + 1$, 1 83. $x = 5k \pm \sqrt{26}k$ **Page 17** 84. $\Delta = 89$. Roots are **unequal**, **real** and **irrational**. 85. $\Delta = 25$. Roots are **unequal**, **real** and **rational**. **86.** $\Delta = 0$. Roots are **equal** and **real**. **87.** ∆ = – 23. Roots are **unequal** and **complex**. **88.** $4 - 12c \ge 0$ so $c \le \frac{1}{3}$. Includes equal as equal roots are real.

89. $4 + 16d < 0$ so $d < \frac{1}{4}$ $\frac{1}{4}$.

Page 17 cont... 90. $e^2 - 144 = 0$ so $e = \pm 12$. **91.** $f^2 - 8 < 0$ so $\sqrt{8} < f < \sqrt{8}$. **92.** $9k^2 - 32k < 0$ so $k(9k - 32) < 0$ $0 < k < \frac{32}{9}$ **93.** $9k^2 - 60k + 96 < 0$ so $(3k - 8)(k - 4) < 0$ $\frac{8}{3} < k < 4$ **Page 19 94.** $p(-1) = -3$ 95. $p(2) = 15$ **96.** $p(-1) = 3$ **97.** p(– $(0.5) = 3.4375$ **98.** $p(-2) = -35$ **99.** $p(\frac{1}{3}) = 3.691$ 100. $p(3) = 27 + 63 - 18 - 72 = 0$ 101. $k = 22$ **Page 20 102.** $p(-1.5) = 2(-1.5)^3 + 9(-1.5)^2$ $-1.5 - 12 = 0$ hence $(2x + 3)$ is a factor. 103. $k = 7$ 104. $k = 12.5$ 105. $k = 3, 6$ 106. $k = 19$ **107.** $q = 2$ **108.** $p(2a) = 16a^3 - 4a^3 - 6a^3 - 6a^3$ $p(2a) = 0$ hence a factor 109. $m = 2, n = 5$ **110.** $a = 3$, $b = -7$ **111.** $a = 1, b = 8$ **Page 23 112.** $(x + 1)(2x - 1)(2x + 1)$ $x = -1, 0.5, -0.5$ **113.** $(x-4)(x-2)(x+1)$ $x = 4, 2, -1$ **114.** $(x + 1)(2x + 1)(3x - 2)$ $x = 0.667, -1, -0.5$ **115.** $(x-1)(2x-5)(2x+3)$ $x = -1.5, 2.5, 1$ $\frac{8}{3} < k < 4$

age 19

4. $p(1) = 3$

5. $p(2) = 15$

6. $p(1) = 3$

7. $p(0.5) = 3.4375$

8. $p(2) = 35$

9. $p(\frac{1}{3}) = 3.691$

90. $p(3) = 27 + 63 - 18 - 72 = 0$

125.

90. $p(3) = 27 + 63 - 18 - 72 = 0$

125.

92. $p(1.5) = 2(1.5)^3 +$ Page 20

102. $p(-1.5) = 2(-1.5)^3 + 9(-1.5)^2$

102. $p(-1.5) = 2(-1.5)^3 + 9(-1.5)^2$
 $-1.5 - 12 = 0$

hence $(2x + 3)$ is a factor.

103. $k = 7$

104. $k = 12.5$

104. $k =$ 102. $p(-1.5) = 2(-1.5)^3 + 9(-1.5)^2$
 $-1.5 - 12 = 0$

hence $(2x + 3)$ is a factor.

103. $k = 7$

104. $k = 12.5$

105. $k = 3, -6$

104. $k = 3, -6$

128. a) $p(-1) = -1 + 4 - 8 + 5 = 0$

76 EAS 3.5 – Complex Numbers

Page 24 116. $(x + 3)(x - 3)(4x - 1)$ $x = -3, 3, 0.25$ **117.** $(x-2)(x+4)(2x-1)$ $x = 2, -4, 0.5$ **118.** $(x-4)(3x-1)(2x+3)$ $x = 4, 0.333, -1.5$ **119.** $(2x + 1)(2x - 1)(x - 1)$ $x = -0.5, 0.5, 1$ **120.** $(3x-1)(x-2)(5x-1)$ $x = 0.333, 2, 0.2$ **121.** $(x + 4)(x + 2)(x - 6)$ $x = -4, -2, 6$ **122.** $(3x-1)(4x-3)(2x-3)$ $x = 0.333, 0.75, 1.5$ **123.** $(x-3)(2x-5)(3x-2)$ $x = 3, 2.5, 0.667$ **124.** $(2x-1)^2(2-x)$ $x = 0.5, 2$ **125.** $(-3x - 2)^3$ $x = -0.667$ **Page 25 126.** a) $p(3) = -275$ b) $p(2) = 48 - 52 + 4 = 0$ c) $x = \frac{2}{3}$ 3 $, \frac{-1}{2}, 2$ **127.** a) $p(-1) = 3$ b) $(x + 2)$ **128.** a) $p(-1) = -1 + 4 - 8 + 5 = 0$ b) $p(x) = (x + 1)(x^2 + 3x + 5)$ **129.** a) $(6 - k)$ b) $k = 6$ c) $(x + 2)(2x + 1)(x - 3)$ **130.** $p(x) = (x + 3)(x - 4)(x + 1)$ **131.** $a = 13$, $b = 8$ **Page 28** 132. $x = 1$ 133. $x = 3$ 134. $x = 2$ **135.** $x = 8$ **136.** $x = 6, 5$ 137. $x = 16$ 138. $x = 9$

139. $x = 0.333$

EAS 3.5 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent